Management trade-off between aboveground carbon storage and understory plant species richness in temperate forests.
نویسندگان
چکیده
Because forest ecosystems have the capacity to store large quantities of carbon (C), there is interest in managing forests to mitigate elevated CO2 concentrations and associated effects on the global climate. However, some mitigation techniques may contrast with management strategies for other goals, such as maintaining and restoring biodiversity. Forest thinning reduces C storage in the overstory and recruitment of detrital C. These C stores can affect environmental conditions and resource availability in the understory, driving patterns in the distribution of early and late-seral species. We examined the effects of replicated (N = 7) thinning experiments on aboveground C and understory vascular plant species richness, and we contrasted relationships between aboveground C and early- vs. late-seral species richness. Finally, we used structural equation modeling (SEM) to examine relationships among early- and late-seral species richness and live and detrital aboveground C stores. Six years following thinning, aboveground C was greater in the high-density treatment and untreated control than in moderate- (MD) and variable-density (VD) treatments as a result of reductions in live overstory C. In contrast, all thinning treatments increased species richness relative to controls. Between the growing seasons of years 6 and 11 following treatments, the live overstory C increment tended to increase with residual density, while richness decreased in MD and VD treatments. The richness of early-seral species was negatively related to aboveground C in MD and VD, while late-seral species richness was positively (albeit weakly) related to aboveground C. Structural equation modeling analysis revealed strong negative effects of live overstory C on early-seral species richness balanced against weaker positive effects on late-seral species richness, as well as positive effects of detrital C stocks. A trade-off between carbon and plant species richness thus emerges as a net result of these relationships among species traits, thinning treatments, and live and detrital C storage. Integrating C storage with traditional conservation objectives may require managing this trade-off within stands and landscapes (e.g., maintain early-seral habitat and species within dense, C-rich forests and, conversely, live and detrital C stores in early-seral habitats) or separating these goals across scales and species groupings.
منابع مشابه
Effects of non-native grass invasion on aboveground carbon pools and tree population structure in a tropical dry forest of Hawaii
Hawaiian tropical dry forests are a unique and highly endangered ecosystem. Remaining fragments are heavily impacted by invasive plant species, particularly the perennial bunchgrass Pennisetum setaceum (Forssk.) Chiov. (fountain grass). Little is known about the impact of invasive species on carbon cycling in terrestrial ecosystems. Biomass estimates are a critical first step in understanding t...
متن کاملForest Management Influences Aboveground Carbon and Tree Species Diversity in Myanmar’s Mixed Deciduous Forests
Declines in the global extent and condition of tropical forests have reduced carbon storage potential and caused biodiversity loss. However, the magnitude of these problems within individual countries may depend on the extent of the reserved forest estate, and the particular rules put in place to manage resource use in these areas. To test this hypothesis, aboveground carbon stocks and indices ...
متن کاملCaspian Coastal Forests: Arbuscular Mycorrhizal Fungi and Understory Vegetation
Moist and temperate Caspian forests are associated with a diversity of soil types and topography. Although, natural history and ecological attributes of the Caspian vegetation is well-documented, little is known about mycorrhizae of the Caspian (Hyrcanian) flora. Samples of herbaceous plant species were collected from 4 pre-determined altitudes (-13 upto about 1500m above sea level, appro...
متن کاملPredicting Understory Species Richness from Stand and Management Characteristics Using Regression Trees
Managing forests for multiple ecosystem services such as timber, carbon, and biodiversity requires information on ecosystem structure and management characteristics. National forest inventory data are increasingly being used to quantify ecosystem services, but they mostly provide timber management and overstory data, while data on understory shrub and herbaceous diversity are limited. We obtain...
متن کاملFailure Mode and Effects Analysis (FMEA) for Identifying Trade Barriers of Perishable Goods in Iran: Case Study of Bushehr
Moist and temperate Caspian forests are associated with a diversity of soil types and topography. Although, natural history and ecological attributes of the Caspian vegetation is well-documented, little is known about mycorrhizae of the Caspian (Hyrcanian) flora. Samples of herbaceous plant species were collected from 4 pre-determined altitudes (-13 upto about 1500m above sea level, appro...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Ecological applications : a publication of the Ecological Society of America
دوره 23 6 شماره
صفحات -
تاریخ انتشار 2013